Menoufiya University

Faculty of Engineering Shebin El-Kom
Des. \& Prod. Eng. Department
First Semester Examination 2013-2014

Subject: Math.(3)
Code: BES213
Time Allowed: 3 hours
Total Marks: 100 marks
Date of Exam: 12/1/2014

Solve the Following Questions

(Question Number-1) :(20 Marks)

(A) Let f be a scalar field and \bar{F} be a vector field. Check the appropriate box (Vector, Scalar, or Nonsense) for each quantity.

	Quantity	Vector	Scalar	Nonsense		Quantity	Vector		
Scalar	Nonsense								
1	$\nabla \cdot(\nabla f)$	\square	\square	\square	5	$\operatorname{curl}(\nabla f)$	\square	\square	\square
2	$\operatorname{grad}(\operatorname{div} \boldsymbol{f})$	\square	\square	\square	6	$\nabla \cdot(\nabla \times \overline{\boldsymbol{F}})$	\square	\square	\square
3	$\operatorname{div}(\operatorname{grad} \overline{\boldsymbol{F}})$	\square	\square	\square	7	$\operatorname{div}(\operatorname{curl} f)$	\square	\square	\square
4	$\operatorname{div}(\operatorname{div} \overline{\boldsymbol{F}})$	\square	\square	\square	8	$\operatorname{curl}(\operatorname{curl} \overline{\boldsymbol{F}})$	\square	\square	\square

(B) Prove that $\iint_{S} \bar{r} \cdot \bar{n} d s=3 ; \mathrm{S}$ is the surface of the cube bounded by $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=1, \mathrm{z}=0, \mathrm{z}=1$.
(C) Show that the area bounded by a simple closed curve C is given by $\frac{1}{2} \oint_{C} x d y-y d x$.

Question Number-2):(20 Marks)
(A) If $\bar{U}(x, y, z)=\left(2 x^{2} z\right) \bar{i}-\left(x y^{2} z\right) \bar{j}+3 y z^{2} \bar{k}$. State whether: $1 \bar{U}$ is irrotational or not? 2 $\overline{\boldsymbol{U}}$ is solenoidal or not? $3 \operatorname{div} \bar{U}$ is harmonic function or not?
(B) If $\bar{r}=x \bar{i}+y \bar{j}+z \bar{k}$. $\quad 1$ Find $\operatorname{grad} \phi$ if $\phi=\ln r, \quad 2$ Find $\nabla \phi$ if $\phi=\frac{1}{r}$

(Ouestion Number-3) :(20 Marks)

(A) Verify Green's theorem in the plane for $\int_{C}\left(x^{2} y+y\right) d x+y^{2} d y$ where C is the closed curve between the two curves $y=x, y=x^{2}$.
(B) Verify stokes' theorem for $\bar{F}=(y z) \bar{i}+(x z) \bar{j}+x y \bar{k} ; \mathrm{S}$ is the surface of the cube $x=0, y=0$, $z=0, x=1, y=1, z=1$ above y-z plane.
(Ouestion Number-4):(20 Marks)
(A) Prove that the area of a parallelogram with sides \bar{A} and \bar{B} is $|\bar{A} \times \bar{B}|$.

	Max
(B) Solve the following problem by the simplex method:	s.t.
	$5 x_{1}+4 x_{2}+5 x_{2}$
	$3 x_{1}+6 x_{2}=180$
$8 x_{1}+5 x_{2} \geq 160$	
$x_{1}, x_{2} \geq 0$	

(Ouestion Number-5) :(20 Marks)
(A) Evaluate the following integrals
$11 \int_{0}^{\infty} y^{\frac{1}{2}} e^{-y^{3}} d y$
$22 \int_{0}^{2} \frac{x^{2}}{\sqrt{2-x}} d y$
(B) Prove that $\beta(m, n)=2 \int_{0}^{\frac{\pi}{2}}(\sin \theta)^{2 m-1}(\cos \theta)^{2 n-1} d \theta$, and evaluate $\int_{0}^{\frac{\pi}{2}} \sqrt{\tan \theta} d \theta$

| This exam contributes" by measuring in achieving Programme Academic Standards according to | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NARS | | | | | | |
| Question Number | Q1-A | Q1-B,C | Q2, Q4-A | Q3 | Q4-B | Q5 |
| Skills | a-1-1, a-1-2, a-1-3 | a-8-1 | a-1-3 | b-3-1 | b-7-1 | c-1-1 |
| | Knowledge \& Understanding Skills | Intellectual Skills | Professional Skills | | | |

